विषयसूची:
- चरण 1: हार्डवेयर की आवश्यकता:
- चरण 2: हार्डवेयर हुकअप:
- चरण 3: तापमान के मापन के लिए कोड:
- चरण 4: अनुप्रयोग:
वीडियो: ADT75 और कण फोटॉन का उपयोग करके तापमान का मापन: 4 कदम
2024 लेखक: John Day | [email protected]. अंतिम बार संशोधित: 2024-01-30 09:21
ADT75 एक अत्यधिक सटीक, डिजिटल तापमान सेंसर है। इसमें तापमान की निगरानी और डिजिटलीकरण के लिए एक बैंड गैप तापमान सेंसर और डिजिटल कनवर्टर के लिए एक 12-बिट एनालॉग शामिल है। इसका अत्यधिक संवेदनशील सेंसर इसे परिवेश के तापमान को सटीक रूप से मापने के लिए पर्याप्त सक्षम बनाता है।
इस ट्यूटोरियल में कण फोटॉन के साथ ADT75 सेंसर मॉड्यूल की इंटरफेसिंग का चित्रण किया गया है। तापमान मानों को पढ़ने के लिए, हमने I2c एडेप्टर के साथ arduino का उपयोग किया है। यह I2C एडेप्टर सेंसर मॉड्यूल से कनेक्शन को आसान और अधिक विश्वसनीय बनाता है।
चरण 1: हार्डवेयर की आवश्यकता:
अपने लक्ष्य को पूरा करने के लिए हमें जिन सामग्रियों की आवश्यकता होती है, उनमें निम्नलिखित हार्डवेयर घटक शामिल हैं:
1. एडीटी75
2. कण फोटॉन
3. I2C केबल
4. कण फोटॉन के लिए I2C शील्ड
चरण 2: हार्डवेयर हुकअप:
हार्डवेयर हुकअप अनुभाग मूल रूप से सेंसर और कण फोटॉन के बीच आवश्यक वायरिंग कनेक्शन की व्याख्या करता है। वांछित आउटपुट के लिए किसी भी सिस्टम पर काम करते समय सही कनेक्शन सुनिश्चित करना मूलभूत आवश्यकता है। तो, अपेक्षित कनेक्शन इस प्रकार हैं:
ADT75 I2C पर काम करेगा। यहाँ उदाहरण वायरिंग आरेख है, जिसमें दिखाया गया है कि सेंसर के प्रत्येक इंटरफ़ेस को कैसे वायर किया जाए।
आउट-ऑफ-द-बॉक्स, बोर्ड को I2C इंटरफ़ेस के लिए कॉन्फ़िगर किया गया है, जैसे कि यदि आप अन्यथा अज्ञेयवादी हैं तो हम इस हुकअप का उपयोग करने की सलाह देते हैं।
आपको बस चार तार चाहिए! केवल चार कनेक्शन की आवश्यकता होती है Vcc, Gnd, SCL और SDA पिन और ये I2C केबल की मदद से जुड़े होते हैं।
इन कनेक्शनों को ऊपर की तस्वीरों में दिखाया गया है।
चरण 3: तापमान के मापन के लिए कोड:
आइए अब कण कोड से शुरू करते हैं।
Arduino के साथ सेंसर मॉड्यूल का उपयोग करते समय, हम application.h और Spark_wiring_i2c.h लाइब्रेरी को शामिल करते हैं। "application.h" और Spark_wiring_i2c.h लाइब्रेरी में ऐसे कार्य हैं जो सेंसर और कण के बीच i2c संचार की सुविधा प्रदान करते हैं।
उपयोगकर्ता की सुविधा के लिए संपूर्ण कण कोड नीचे दिया गया है:
#शामिल
#शामिल
// ADT75 I2C पता 0x48 (72) है
# परिभाषित करें Addr 0x48
फ्लोट cTemp = ०.०, fTemp = ०.०;
इंट अस्थायी = 0;
व्यर्थ व्यवस्था()
{
// चर सेट करें
Particle.variable("i2cdevice", "ADT75");
पार्टिकल.वेरिएबल ("cTemp", cTemp);
// I2C संचार को मास्टर के रूप में प्रारंभ करें
वायर.बेगिन ();
// सीरियल कम्युनिकेशन शुरू करें, बॉड रेट सेट करें = 9600
सीरियल.बेगिन (९६००);
देरी (300);
}
शून्य लूप ()
{
अहस्ताक्षरित इंट डेटा [2];
// I2C ट्रांसमिशन शुरू करें
Wire.beginTransmission (Addr);
// डेटा रजिस्टर का चयन करें
वायर.राइट (0x00);
// I2C ट्रांसमिशन बंद करो
वायर.एंडट्रांसमिशन ();
// डेटा के 2 बाइट का अनुरोध करें
Wire.requestFrom (Addr, 2);
// डेटा के 2 बाइट्स पढ़ें
// अस्थायी एमएसबी, अस्थायी एलएसबी
अगर (वायर.उपलब्ध () == 2)
{
डेटा [0] = वायर.रीड ();
डेटा [1] = वायर.रीड ();
}
// डेटा को 12 बिट्स में बदलें
अस्थायी = ((डेटा [0] * 256) + डेटा [1]) / 16;
अगर (अस्थायी> 2047)
{
अस्थायी - = ४०९६;
}
cTemp = अस्थायी * ०.०६२५;
fTemp = (cTemp * १.८) + ३२;
// डैशबोर्ड पर आउटपुट डेटा
Particle.publish ("सेल्सियस में तापमान:", स्ट्रिंग (cTemp));
Particle.publish ("फ़ारेनहाइट में तापमान:", स्ट्रिंग (fTemp));
देरी (1000);
}
Particle.variable() फ़ंक्शन सेंसर के आउटपुट को स्टोर करने के लिए वेरिएबल बनाता है और Particle.publish() फ़ंक्शन साइट के डैशबोर्ड पर आउटपुट प्रदर्शित करता है।
सेंसर आउटपुट आपके संदर्भ के लिए ऊपर चित्र में दिखाया गया है।
चरण 4: अनुप्रयोग:
ADT75 एक अत्यधिक सटीक, डिजिटल तापमान सेंसर है। इसे पर्यावरण नियंत्रण प्रणाली, कंप्यूटर थर्मल मॉनिटरिंग आदि सहित प्रणालियों की एक विस्तृत श्रृंखला में नियोजित किया जा सकता है। इसे औद्योगिक प्रक्रिया नियंत्रण के साथ-साथ पावर सिस्टम मॉनिटर में भी शामिल किया जा सकता है।
सिफारिश की:
MCP9803 और कण फोटॉन का उपयोग करके तापमान मापन: 4 कदम
MCP9803 और कण फोटॉन का उपयोग कर तापमान मापन: MCP9803 एक 2-तार उच्च सटीकता तापमान सेंसर है। वे उपयोगकर्ता-प्रोग्राम करने योग्य रजिस्टरों के साथ सन्निहित हैं जो तापमान संवेदन अनुप्रयोगों की सुविधा प्रदान करते हैं। यह सेंसर अत्यधिक परिष्कृत बहु-क्षेत्र तापमान निगरानी प्रणाली के लिए उपयुक्त है।
STS21 और कण फोटॉन का उपयोग करके तापमान मापन: 4 कदम
STS21 और पार्टिकल फोटॉन का उपयोग करके तापमान मापन: STS21 डिजिटल तापमान सेंसर बेहतर प्रदर्शन और एक अंतरिक्ष बचत पदचिह्न प्रदान करता है। यह डिजिटल, I2C प्रारूप में कैलिब्रेटेड, रेखीयकृत सिग्नल प्रदान करता है। इस सेंसर का निर्माण CMOSens तकनीक पर आधारित है, जो बेहतर
TMP112 और कण फोटॉन का उपयोग करके तापमान मापन: 4 कदम
TMP112 और कण फोटॉन का उपयोग करके तापमान मापन: TMP112 उच्च-सटीकता, कम-शक्ति, डिजिटल तापमान सेंसर I2C मिनी मॉड्यूल। TMP112 विस्तारित तापमान माप के लिए आदर्श है। यह डिवाइस कैलिब्रेशन या बाहरी घटक सिग्नल कंडीशनिंग की आवश्यकता के बिना ± 0.5 डिग्री सेल्सियस की सटीकता प्रदान करता है। I
HIH6130 और कण फोटॉन का उपयोग करके आर्द्रता और तापमान मापन: 4 कदम
HIH6130 और कण फोटॉन का उपयोग करके आर्द्रता और तापमान मापन: HIH6130 डिजिटल आउटपुट के साथ एक आर्द्रता और तापमान सेंसर है। ये सेंसर ± 4% आरएच का सटीकता स्तर प्रदान करते हैं। उद्योग-अग्रणी दीर्घकालिक स्थिरता के साथ, सही तापमान-मुआवजा डिजिटल I2C, उद्योग-अग्रणी विश्वसनीयता, ऊर्जा दक्षता
HDC1000 और कण फोटॉन का उपयोग करके तापमान और आर्द्रता का मापन: 4 कदम
HDC1000 और कण फोटॉन का उपयोग करके तापमान और आर्द्रता का मापन: HDC1000 एकीकृत तापमान सेंसर के साथ एक डिजिटल आर्द्रता सेंसर है जो बहुत कम शक्ति पर उत्कृष्ट माप सटीकता प्रदान करता है। डिवाइस एक नए कैपेसिटिव सेंसर के आधार पर आर्द्रता को मापता है। आर्द्रता और तापमान सेंसर चेहरे